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Ferromagnetic Curie Temperature in Cubic Lattices with 
Next-Nearest-Neighbor Interaction 

RAZA A. TAHIR-KHELI* ' ! 

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 

AND 

H. S. JARRETT 

E. I. duPont de Nemours and Company Experimental Station, Wilmington, Delaware 
(Received 24 March 1964) 

The Curie temperature for a Heisenberg ferromagnet with nearest-neighbor interaction Ji and next-
nearest-neighbor interaction Ji is calculated by a Green's-function technique. The J2/J1 dependence is found 
to be significantly different from that given by molecular field theory. The Curie temperature approaches 
zero when J2/J1—• —1 in a face-centered cubic magnetic lattice, and when / 2 / / 1 - * 0.6799 in a body-
centered cubic lattice. The face-centered cubic magnetic lattice is relevant to the chalcogenides of europium. 

1. INTRODUCTION 

WHILE most of the present theories of ferromag-
netism and antiferromagnetism are based on the 

assumption of the nearest-neighbor exchange interaction 
only, the recent studies1,2 of the magnetic properties of 
the europium chalcogenides indicate that in addition to 
the nearest-neighbor exchange the next-nearest-neigh­
bor interaction is also appreciable. This picture has now 
been analyzed in the spin-wave theory.3 However, the 
spin-wave theory adequately describes the behavior of 
magnetic systems only in the limit of low temperatures. 
Close to the transition temperature, the spin-wave 
picture becomes inappropriate4 and therefore other 
approximate theories, such as the Weiss molecular 
field theory and the various cluster theories, are usually 
employed. The results of these theories are at best 
qualitatively satisfactory while sometimes they can be 
quite misleading.6 The most reliable estimates of the 
critical properties are, of course, those obtained by 
extrapolating the exact high-temperature series-expan­
sion results to the transition region.6'7 This, however, 
is a very tedious procedure and the only systems 
adequately analyzed so far are those including a single 
exchange parameter.8 

Recently the Green's-f unction methods have been 
successfully applied to the study of the magnetic 
systems.9'10 I t is found that, in general, a simple 
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"random phase" decoupling approximation (RPA) 
leads to acceptable results for the Curie temperatures 
for both ferro10 and antiferromagnetic5 systems, while 
more sophisticated approximations can also be devised 
to yield even better results.11 The extension of the 
Green's-function methods to the study of situations 
including, in addition to the nearest-neighbor exchange, 
the second-neighbor exchange also is the subject of the 
present note. 

2. FERROMAGNETIC CURIE TEMPERATURES 

Let the N spins, in the presence of a z-directed 
spatially uniform field H, be coupled via isotropic 
exchange interaction of the Heisenberg type 

x= -pn Z s/-z Mf-g)SrS. 
S f , a 

- E / 2 ( / - ^ S r S 9 , (2.1) 

where / and g denote lattice sites, fiS is the magnetic 
moment per site, Jx(f-g) and J2(f— g), respectively, 
denote the nearest- and the next-nearest exchange 
integrals: 

Ji (f~ f>)= Jh f and g nearest neighbors, 

J2 (/— g) = J2, / and g next-nearest neighbors, 
= 0, otherwise. (2.2) 

Following the method of Tahir-Kheli and ter 
Haar,10"12 where an RPA type decoupling is employed, 
the statistical average (Sz) is found to be 

(S')= 
(S-$) (l+$)25+1+ (6'+l+$)$2's'+1 

(l_j_<j>)2fi4-l_<j>.2i&fl : 

where 

*=(l/^)ECexP03iEt)-l?-1
1 

k 

(2.3) 

(2.4) 
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Ek = »H+2(S*)£J1z1(l-y1(k)) 

+ 7222(1-72(10)], (2.5) 

7.-(*) = (2*)-1Eexp(&.6<) (2.6) 

(hi is the vector connecting iih nearest neighbors; the 
total number of such neighbors, to a given ion, being %i). 

The Curie temperatures are determined by inves­
tigating the limit when, in the absence of the applied 
field H, the statistical average (Sz), being proportional 
to the system magnetization, approaches zero. In this 
limit we get 

2 5 ( 5 + l ) / 3 = limr_rfl,H-o[2<5*>*] (2.7) 

and therefore 

( f t B r c ) B p A = f 5 ( 5 + l ) / i 2 ; i / F ( / 2 / / 1 ) , (2.8) 
where 

(2.9) 

The sums F(J2/Ji) have been calculated for fee and 
bec lattices, on an IBM-1620 system, for a range of 
values of the ratio (J2/Ji) and are listed in Tables I 
and I I . These sums over the Brillouin zones were per­
formed using Gauss' approximate quadrature method. 
For most of the values shown in the tables, the sums 
were obtained by use of the real roots of the Legendre 
polynomial of order 10, which corresponds to evaluating 

TABLE I. Face-centered cubic lattice. 

J2/J1 

2.00 
1.80 
1.60 
1.40 
1.20 
1.15 
1.10 
1.05 
1.00 
0.95 
0.90 
0.85 
0.80 
0.75 
0.70 
0.65 
0.60 
0.55 
0.50 
0.45 
0.40 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 
0.05 
0.00 

FU2/J1) 

0.603 
0.636 
0.673 
0.715 
0.763 
0.776 
0.790 
0.804 
0.819 
0.834 
0.850 
0.867 
0.885 
0.903 
0.922 
0.943 
0.964 
0.986 
1.01 
1.03 
1.06 
1.09 
1.12 
1.15 
1.18 
1.22 
1.26 
1.30 
1.34 

J2/J1 

-0.05 
-0.10 
-0.15 
-0.20 
-0.25 
-0.30 
-0.35 
-0.40 
-0.45 
-0.50 
-0.55 
-0.60 
-0.65 
-0.70 
-0.75 
-0.80 
-0.85 
-0.90 
-0.95 
-0.96 
-0.97 
-0.98 
-0.99 
-0.994 
-0.998 
-0.9992 
-0.9996 
-1.00 

F(J2/Ji) 

1.39 
1.44 
1.50 
1.56 
1.63 
1.71 
1.80 
1.89 
2.00 
2.13 
2.28 
2.46 
2.67 
2.94 
3.29 
3.76 
4.46 
5.64 
8.35 
9.46 
11.1 
14.0 
20.9 
28.6 
61.5 
130 
242 

00 

TABLE II. Body-centered cubic lattice. 

J2/J1 

2.0 
1.9 
1.8 
1.7 
1.6 
1.5 
1.4 
1.3 
1.2 
1.1 
1.0 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 

F(J*/Ji) 

0.517 
0.533 
0.551 
0.569 
0.589 
0.610 
0.633 
0.658 
0.685 
0.714 
0.746 
0.781 
0.820 
0.863 
0.912 
0.966 
1.03 
1.10 
1.18 

J2/J1 

0.1 
0.00 

-0.10 
-0.20 
-0.30 
-0.40 
-0.50 
-0.60 
-0.65 
-0.66 
-0.667 
-0.670 
-0.675 
-0.679 
-0.6794 
-0.6795 
-0.6797 
-0.6798 
-0.67985 

F(J2/Ji) 

1.28 
1.39 
1.53 
1.71 
1.93 
2.23 
2.67 
3.39 
4.06 
4.25 
4.51 
4.66 
5.12 
5.97 
6.91 
7.43 
10.1 
16.3 
33. 

the sum at about 8000 points within the zone. Near the 
divergent points, however, the sum is slowly convergent 
and more points within the zone must be taken. For 
these cases the roots of the Legendre polynomial of 
order 32 were used, which corresponds to evaluating the 
sum at about 250 000 points within the zone. These 
sums are correct to three significant figures. 

In Ref. 11, an interpolation GreenVfunction method 
was developed which led to an improvement of the 

FIG. 1. ee = kBT0/S(S+i)Ji for S = i'm fee lattice. 
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FIG. 2. ®c=kBTc/S(S+l)Ji for S=§ in fee lattice. 

RPA results. For Curie temperatures, the results of 
reference (11) can in our notation be written as follows: 

(kBTc) = (kBTc)R1>A\ 1-
F(0)~1S-1 

F(0) SS •]• 
(2.10) 

In Figs. 1 and 2 we have plotted the 

£kBTc/$(S+l)J{]^®c 

obtained from Eqs. (2.8)-(10) for a fee lattice and for 

the cases S=% and 5 = § . [The corresponding results 
for the bec lattice can easily be obtained from Eqs. 
(2.8)-(2.10) and from Table II.] Included for compari­
son are the plots obtained from the molecular field 
theory13 which gives 

©c = ( 2 s i / 3 ) [ l + W ^ i ] 
mol. field 

and also from the recent extension by Callen and 
Callen14 of the "consistent" two-particle cluster approx­
imation of Strieb, Callen, and Horwitz.15 We observed 
that for J2/J1X), our ®c, like the molecular field 
result, varies roughly linearly with J2/J1, while for 
Jz/Ji<0 the variation is more rapid. In fact, ®C—>0 
in the fee lattice when J2/J1 —> — 1, and in the bec 
lattice when J2/Ji—> —0.6799. This should be com­
pared with the limiting conditions, J2/J1 —> — 1 and 
— 0.667, which, according to Smart's interpretation of 
molecular field theory,13'16 separate the region of ferro­
magnetic order from antiferromagnetic order of the 
second kind in the fee and the bec lattices, respectively.13 

We feel that in the absence of the detailed exact high-
temperature series expansion results, our results, which 
are in semiquantitative agreement with Callen and 
Callen's cluster approximation results, probably provide 
the most reliable available estimates of the Curie 
temperatures. 
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